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Motivation/Scientific Context

● To model the dynamics of the Earth’s Mantle we treat it as a highly
viscous, incompressible Boussinesq fluid.

● It is important to study the affects of flows over long time periods
to better constrain the parameter space of the model.

● There is seismic and geochemical evidence of chemical/structural
phase transition at the depth of 410 and 670 km. There are viscos-
ity changes of several orders of magnitude. To handle these sharp
interfaces one needs a refinement method to efficiently study the
flow in this region.
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Mantle Convection

● The Governing Equations are:
∇ ·u = 0 Incompressibility
1
ρ∇p = ν∇2u−gα∆T(Momentum Equation with∂u

∂t = 0)

∂T
∂t +u·∇T = κ∇2T+ J

ρCp
( Thermal energy equation)

● u - velocity, T - temp, p is pressure,ν -viscosity, κ - thermal
diffusivity, α - thermal expansion coefficient,ρ - density, andCp -
heat capacity at constant pressure, J - rate of internal pressure per
unit volume, g - gravity.

● Note, these are the Incompressible Steady Stokes Equations with
a source term fed by the unsteady advection diffusion equation at
each time step.
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Advection Diffusion Equation

● We are solving the Advection Diffusion equations in 1D and 2D,
with advection velocity~c and viscosityν.

● 1D

∂u
∂t

+(~c
∂u
∂x

) = ν
∂2u
∂x2

(1)

● 2D

∂u
∂t

= ν∆u−~c·∇u in Ω t ≥ 0 (2)

● Note~c = u yields the viscous Burgers’ Equations.
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Spectral Element Discretization

● We use a Spectral Element Method Discretization to solve1 and2,
expanding the solution as a linear combination of basis functions
φi(x).

uk
n =

n

∑
i=0

uk
i (t)φi(x) (3)
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Spatial Discretization- Basis Functions

●

Figure 1: A. GLL Spatial Discretization with 2 elements and 5th degree Polynomials B. GLL Polynomials of degree 1
through 10
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Spatial Discretization

● The discretized equation can be written as a non-linear differential
equation

Mu̇(t) =−C(u)u(t)−νKu(t) (4)

● M- Mass matrix,K- Stiffness matrix andC(u) is the nonlinear
discrete operator. Each of which are block diagonal matrices.

● So to solve foru(~x, t) we will integrate these equations in time.
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Spatial Discretization

●

Figure 2: Global System Matrices. From the left 1 Mass,1, Convection, 1 Stiffness(Diffusion)
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Time Discretization

● In order to obtain a stable solution in time, one considers the
eigenvalues of the operators acting onu, and makes certain that
the time marching scheme is stable in this region.

● In our system,C andK act onu

●

Figure 3: Eigenvalues of the Diffusion and Convection operators
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Time Discretization

● For spectral methods the eigenvalues,λ, of the diffusion matrix
are real and negative, and the maximum eigenvalue isO(N4) where
N is the maximum polynomial degree. For Spectral Elements,
empirical tests showλ ≈ O(neN3) wherene is the number of ele-
ments.

● The eigenvalues,λ, of the convection operator have an imaginary
part and and a negative real part, and the largest eigenvalue is
O(N2).
Thus, we want a time discretization which is stable on the negative
real axis and the imaginary axis.
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Time Discretization

●

Figure 4: Stability region arrows denote stability outside the corresponding curve for the Backward Difference time
marching scheme.
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Time Discretization

● In order to achieve 3rd order accuracy, and a stable solution in
time we use the BDF3 scheme, and extrapolate the Convection
term at each iteration.

(
11
6∆t

M +νK)vn+1
i =

M
∆t

(3vn
i −

3
2
vn−1

i +
1
3
vn−2

i )−Cvn+1
i (5)

where we use 3rd order extrapolation to obtain

Cvn+1
i = 3Cvn

i −3Cvn−1
i +Cvn−2

i +O(∆t3) (6)

● For SEM a harsh condition is placed on∆t in order to satisfy the
CFL criteria. For basis functions of degreeN−1,

∆t ≤ 6.5
ν

π2

N4
(7)
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Computation Localization

● We originally formed the global system matrices, and then iterated
over time. However, as we moved into 2D these system matrices
have size(P+ 1)2NxNy, which, even for coarse meshes are quite
large.

● Static Condensation
Earlier we gave an illustration of the coupling between elements.
By re-ordering the mapping between local and global indices we
could effectively decouple the interiors and only solve the coupled
system on elemental boundaries. This could all be done with local
element matrices of size(P+1)2.
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Computation Localization

●

Figure 5: Coupled and Uncoupled Diffusion operator. 1 Big coupled 1 Boundary 1Interior
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Computation Localization

● Advantages:
Reduces communication once the boundary information has been
decoupled. No global matrices need to be stored, all calculations
are done on element matrices

● Disadvantages: Need to compute Schur compliment.
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Computation Localization

● Elementwise operations
Instead of using static condensation, one can perform operations
on local elements and then cleverly add the proper amount to the
global solution U without the cost of static condensation.

● A weighting matrix is formed for each element to determine the
contribution of the local solution to the global solution. Finally we
take care of the element boundary dependencies after each local
calculation.
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Computation Localization

● Advantages: For large P this should be very efficient since most
entries are interior nodes, and each processor can use its cache
more efficiently. No global matrices need to be stored, all calcu-
lations are done on element matrices

● Disadvantages: For small polynomial degree, more communica-
tion compared to calculations
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Computation Localization

● In either case, these problems scale well to higher dimensions be-
cause the global Matrix operators can be written as tensor prod-
ucts.

● We construct the local operators for all possible polynomial de-
gree (run time parameter), and store them in an easily accessible
efficient data structure. These include, M,A,C, Derivative, Iter-
polants fromPn → Pn−1 and vice versa. These structures are ac-
cessible through a global data module.
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P-type Refinement

● With the local matrices stored for all values of P, and the ability
to perform local operations and build the global solution, it is now
trivial to compute the derivative of the local solution and perform
error analysis with it.

● For example, if the slope of our solution at a local element is
greater than some user defined value, then we increase the poly-
nomial degree of that element by one.

● We perform this on each element and then construct a new local
to global mapping with respect to the new elements.
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P-type Refinement

●

Figure 6: 3 time steps in solution to burgers’ equation starting with N=32 P=4 refining with abs(du/dx) is greater
than 8
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Validation

● 1D Burgers’s Equation

Figure 7: Comparison of Results between Our code (left) and Published Code (right)
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Validation

●

Figure 8: Comparison of results between our code and actual maximum amplitude of slope. We have a value of
152.2265 at t=.5100 analytical value is 152.0051 at t=.5105. The compares very well with other published numerical
methods.
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2D Results

● 2D Burgers’s Equation
Start with initial conditions

u(x,y,0) = .014(x2+y2) on[−1,1]2 (8)

We use periodic boundary conditions,P = 8, Nx = 4, Ny = 4 ν =
.01

P. Aaron Lott palott@ipst.umd.edu



AMSC 664: 2D Spectral Element Scheme for Viscous Burgers’ Equation 24

Future Directions

● Add 2D adaptivity
● Implement Stokes Equation
● Parallelization
● Preconditioned Conjugate Gradient to solve local systems
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Conclusions/Summary

● Implemented and verified 1D and 2D viscous Burgers’ Equation
● Implemented P adaptivity in 1D, and framework for adaptivity in

2D
● Structured code to begin MPI Parallelization
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The End — Thank you


